
+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Hello again! As promised, here's a post to follow my previous article. This time, I'll talk about a way of
eliminating the necessity to write boilerplate code for your projects.

The basics

AngularJS is a framework that supports module structure, which allows creating independent modules.
Let’s break down the approach using forms as an example. Now, what is required for forms to work?

1. View - for displaying fields

2. Validation - for checking input data

3. Data processing

The first two items will appear in every project, as 90% of forms look alike. Let’s make a form into a
component that will take care of display and validation. Component responsible for validation we’ll get
from our repository. We can divide form generator into 2 modules:

1. The first one is the form itself. It will process our data object and launch function, if the form is
filled out correctly.

2. The second one is responsible for field rendering and validation.

I suggest using the following structure to describe data for generation:

this.model = {
 url: 'sign-in',

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
https://magora-systems.com/getting-started-with-angularjs-projects-3-main-rules/
https://github.com/Magora-Systems-Frontend/mgr-validation

+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

 submit: function (data) {

 },
 rules: {
 email: {
 type: 'invalid',
 message: 'Email error',
 rule: function (form, field) {
 var re = /^([\w-]+(?:\.[\w-]+)*)@((?:[\w-]+\.)*\w[\w-]{0,66})\.([a-z]{2,6}(?:\.[a-z]{2})?)$/i;
 return field.$dirty && !re.test(field.$modelValue);
 }
 }
 },
 attr: {
 identifier: {
 type: 'text',
 attr: {placeholder: 'Your email or phone number'},
 validators: ['required', 'email']
 },
 gender: {
 type: 'select',
 value: 'man',
 options: [{
 name: 'Man',
 value: 'man'
 }, {
 name: 'Woman',
 value: 'woman'
 }],
 attr: {placeholder: 'Your email or phone number'},
 validators: ['required']
 },
 password: {
 type: 'password',
 attr: {placeholder: 'Your password'},
 validators: ['required']
 }
 },
 buttons: {
 submit: {
 text: "Sign in"
 }
 }
 };

Rules allow setting up a custom validator, attr stores a list of our fields. The form will initialize upon
calling the directive:

body
 div(ng-controller="demoCtrl as ctrl")

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

 mgr-form-builder(model="ctrl.model")

Perhaps, at this point you'll have a valid question: “How can I customize View for a unique form?” For
that you’ll need to simply add URL of a new form template using templateUrl attribute:

scope: {
 model: '=',
 formName: '=',
 templateUrl: '@'
 },
 templateUrl: function (el, attr) {
 if (attr.templateUrl) {
 return attr.templateUrl;
 }
 return 'formBuilder/formBuilder.html';
 },

As far as displaying goes, everything is pretty much clear. But now there’s another question to answer:
how do we get data after a form's been successfully filled out? For that, let’s add a function that runs
upon “submit” event:

formBuilderCtrl.submit = function () {

 if (!formBuilderCtrl.model.submit) {
 return false;
 }

 var data = {};
 Object
 .keys(formBuilderCtrl.model.attr)
 .forEach(function (key) {
 data[key] = formBuilderCtrl.model.attr[key].value;
 });

 formBuilderCtrl.model.submit(data);
 };

Now all we need to do is mention our function in the module. Once a form is completed, submit
function will be performed and we’ll get the data added by user.

Result

We have a component that we can use from project to project and we don't have to worry about how or
what to validate. We just need to describe data model. Want to learn more? Take a peek into our
repository.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
https://github.com/Magora-Systems-Frontend/mgr.formBuilder
https://github.com/Magora-Systems-Frontend/mgr.formBuilder

