
+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

We had a serious task ahead of us - to develop a high-load system capable to collect and store
massive amounts of real-time data submitted by oil rig sensors (1 000 - 1 000 000 devices sending data
with any interval between 1 and 60 seconds). The end product also had to meet the following major
requirements:

 

Security is critical.

 

 

Very high throughput.

 

 

Open-source technology stack for critical parts of application.

 

Architecture

The system architecture is shown on the figure below.Here are the main parts of this complex software:

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Local agent is a .NET app. It works as a Windows service that connects to various data sources
and consumes data from them. Data sources can be OPC-servers, Web Services, ODBC
instances, Web API, CSV sources. Each local agent has a unique identifier. Its configuration is
defined either by the web part or by a configuration file. Availability of an Internet connection
determines the preferable choice here.

Cassandra cluster. Cassandra is an open source NoSQL database management system
implemented in Java by the Apache Software Foundation. It’s a great solution for handling huge
amounts of data. Cassandra provides scalable, decentralised and fault-tolerant data storage. It
has its own query language called CQL (Cassandra Query Language) and supports MapReduce
technology.

Web part is divided into two parts. The first one is a website with an admin panel and a user
interface. Admin can manage local agents and agent settings, manipulate data format, user
privileges, etc. Users can log in, view historical data and charts representing real time data. We
chose Highcharts for chart rendering, Bootstrap and Ext.js for the UI. It allowed us to develop a
fully functioning and good-looking interface really quick. All the backend logic is implemented in
Node.js. The second part is a “cache manager” app implemented in Java. It was created for
updating and clearing the cache. We opted for Redis as a cache engine.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
https://magora-systems.com/uploads/pages/96/GPAS_article_image_1.webp


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Implementation details

One of Cassandra’s distinctive features is clustering. We built a cluster consisting of four machines. The
story of setting up Cassandra deserves a separate article. After configuring and balancing tokens for
each node, we ended up with the following diagram in the OpsCenter (a visual management and
monitoring tool for Cassandra):

Circles represent the Cassandra cluster nodes. The green colour indicates that all of them are up. Even
distribution of the circles denotes that the cluster is balanced.
We implemented the Web UI in Node.js and Express.js framework. Using Express.js allowed us to
promptly create a robust Web API in order to separate the backend logic from the UI layer.The user

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
https://magora-systems.com/uploads/pages/96/GPAS_article_image_2.webp


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

accounts and settings are stored in MySQL. We utilized a Node ORM2 package to create data access
logic. It is a very convenient ORM for Node.js that supports many relational and NoSQL database
engines.

To avoid UI lags we created a cache run by the Redis engine. Redis stores the last N records received
from local agents. The reasoning behind this decision is that Cassandra may contain millions and
millions of records, and it also has known data filtering problems. Now we don’t have to pull data from
Cassandra each time, we just get it from Redis.

The web UI contains several line charts and tables with real time data (it is updated every second). We
set up an Apache Hadoop for analysing and managing the historical data. Hadoop is a perfect
framework for working with big volumes of data. We utilized the Hadoop MapReduce module.

Summary

Why do we need all these technologies? Nowadays, we have to deal with increasing volumes of data
that concerns various aspects of life: science, security, social networks, trading, etc. Due to the
scalability and schema-free style of Cassandra we can use it to store any type of business models. We
can do it in real time and guarantee data security, fault-tolerance and availability at all times. In addition,
all of these instruments are free. So you can build high-load apps for your needs in a fast and
convenient way.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

