
+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Customers are different, therefore their demands differ as well. One of our clients had set us with a task
to create a good-looking animated bubble chart capable to regroup. So, let’s talk about it.

How it all began

It all began as it is supposed to – with a Technical Specification. It was sufficient enough to start
working right away. It included a description of page business logics as a whole and information about
the parameters responsible for grouping or filtering bubbles and other important details. Also they
attached an example we could use to build bubbles’ logics and physics.

Let’s start

Looking through the source code of an existing page seemed a bit too complicated, so we found a
source with a simple description of bubbles’ physics. I’d have to say that for someone, who just started
working with D3’s Force Layout concepts like friction, charge, gravity might seem complicated. Even
the official site states that those names are “perhaps misleading”. And it’s true! Here’s a brief
description of the parameters:

friction is a parameter responsible for DOM node acceleration. For example, if the value of a
parameter equals 1, acceleration will be almost instant – a node will go from A to B in a flash. If
the value is between 0 and 1, node motion will take some time. In case the parameter value
equals 0, a node will freeze and won’t go anywhere.

charge is a parameter defining the force of node attraction/repulsion from each other. From
personal experience I can tell you, that it’s a useful parameter for simple cases, but in our

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
http://www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html?_r=0
http://vallandingham.me/bubble_charts_in_d3.html
http://vallandingham.me/bubble_charts_in_d3.html
https://github.com/mbostock/d3/wiki/Force-Layout


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

situation it became a stumbling block. But this is a topic for later.

gravity is a parameter that determines the attraction/repulsion of nodes from the centre.

I’m not going to reinvent the wheel, as the library author’s blog has many examples of using these
forces. Here’s a short description:

1) To create a "force" just declare it and set sizes:

this._force = d3.layout.force();
this._force.size([width, height]);

All other parameters will be determined automatically

2) To add nodes to it you’ll need to use the “nodes” method:

this._force.nodes(data);

Data is an array of objects containing node parameters. An object can contain any fields, but some field
names are used as initial values of the “force”. In order to make the “force” move the nodes the way we
want it to, we need to determine the “tick” event handler. It reacts to every “frame” of the force and
allows to calculate the next position of a node. That’s where the magic begins… We’ll talk about it later.
The force can be activated with the help of “start” method:

this._force.start();

Use of this method “brings our force to life”.

Processing force “frame”

As mentioned above, the “tick” event handler is a place where the magic happens – calculation of node
parameters. In our case, a bubble has 4 parameters:

Horizontal position

Vertical position

Radius

Color

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
http://bl.ocks.org/mbostock
https://github.com/mbostock/d3/wiki/Force-Layout#wiki-nodes


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

As colour has no impact on the force, we’re not going to take it into consideration. The core meaning of
the handler is looking over all of the DOM elements (in our case svg:circle), calculating the parameters
of every node and setting new values for the parameters. The handler is called, until the value of alpha
(so called «cooling parameter») becomes zero. A law that defines the way it's calculated at each step is
probably known only by the author of the library. This operation is not a simple one, to say the least. So
don’t expect miracles happening and being able to represent data of any size perfectly – it’ll depend on
the calculating power of a client’s machine and a type of browser. In our case, the customer wanted all
of the bubbles to fly gracefully with input data consisting of over 10000 elements. We wrote a simple
demo-version with the option of choosing the number of elements to cool it down. In my opinion, in
Google Chrome the calculation and animation work faster than in Firefox, but that’s just an observation
of mine.

It seems to be working, what’s next?

We’ve implemented the approach, described in the guide I’ve mentioned above. Everything works as
supposed to, all of the bubbles spread and flow beautifully, and they bypass each other, stop at their
places… But something’s not right… If you look at a live example from the article, you’ll see that even
though the groups have different centres, bubbles themselves interact with each other no matter which
group they belong. This creates a common force that pushes groups from each other. In the example
from the article there are only 3 groups, but in our case there were 7 of them. Trust me, it looked
dreadful: at times a group of bubbles were repulsed by other groups to a distance of 1,5-2 scale
divisions. It confused a user, forcing him to calculate how far the necessary group was from the central
one, if there had been one.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
http://vallandingham.me/bubble_charts_in_d3.html
https://magora-systems.com/uploads/pages/88/bad.webp


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

As expected, the solution has been found at the library author’s blog. In this situation he doesn’t use a
standard function to calculate particle interaction, setting “0” value for the charge parameter. Instead,
he splits nodes up into clusters, and every node knows which cluster it belongs to. Based on this, the
force of interaction is only calculated for nodes pertaining to one cluster. In our case, it’s been decided
that a bubble with the largest diameter in a group will become central, and all other bubbles of a group
will follow it. This way, if a bubble is the leading one, it’ll be necessary to determine only its next
position, but not the interaction with other bubbles of a group. Otherwise a group won’t get to a final
point.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
http://bl.ocks.org/mbostock/7882658
https://magora-systems.com/uploads/pages/88/good.webp


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Conclusion

Adding a complete component code here is not appropriate, as everyone has specific tasks, plus there
is also a thing called “code confidentiality policy”. Hopefully, I came through with the general idea and
explained dealing with the issues during the development process. Maybe this article will help someone
to create a similar component faster.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

