<> magora

This post outlines a way of working with data in JavaScript. | received a task of developing a Calendar
app, cells of which would actually become editable forms. Moreover, users would get to choose which
specific form to use for each cell. Because of that, a cell pattern had to be generated on the client-side
according to this choice. The intricacy here was that fields of each form ought to be editable as well. So,
clearly, all changes needed to be stored somewhere.

| abandoned the concept of creating form patterns, because upon modification of one field another had
to change, too. Field interaction logics concerned three database tables:
e Two of them at least half-filled with data;

¢ One for storing changes.

That's why | decided to create my own storage (as a Store in Ext JS). The main idea behind it is that
each JSON format node is presented as a separate unit. The principle is: | get all three tables and
create three index trees, where each parent is also a context of a subsidiary node. Perhaps, it sounds a
tad complicated, take a look at this example:

Customers

var Cust oners = [

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

<> magora

Orders

var orders = [

{
Schedule

var schedul e = [

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

<> magora

There is a catalogue of customers, a list of orders and a shipping schedule. This schedule can be
edited in the Calendar and Couriers can see orders assigned to them there. A courier can also be
added to/removed from the schedule on a weekly basis.

Implementation

Store object is responsible for storing data and transferring it to/from the server. Implementation
proceeds as follows:

var Store = function(){

InMemory function allows adding an object or an array received from the server to an index tree:

function i nMenory(from

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

<> magora

}

Y)Y (innerVal ue);

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

<> magora

Using get, set or any other node function, we gain access to each level. For instance, you can
implement the first method for the facadeArray. Then getting a specific courier’'s schedule for a certain
week will look like this:

var firstOnWeekPredicate = function(x){
return x.get().Custonerlid.get() == "1" && x.get().StartWek.get() ==

If you haven't yet worked with such handy functions as where, first, last, union, map, etc. - check out
underscorejs.org.

Now you can modify scheduleByCourierldAndWeek array: add a new day of the week or change
existing ones.

schedul eBy?ouri er | dAndWeek. push({

The “facade” of getNode function can be reworked according to your needs.
Result

So, what is the end result here? We’ve divided a big object, received from the server, into connected
nodes. We've sent nodes to the segments of code responsible for their processing. We've converted
data the way user desired. Now we need to put it all together into a single object and send it back to the
server. For that we utilize dumpAcc function:

function dunpAcc(st or eAcc) {

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
http://underscorejs.org/

<> magora

JSON.stringify(dumpAcc(store.getScheduleList())) allows us to get clientResponse.
And, lastly, here are functions clone and isPrimitive that I've also used.

function cl one(a) {

return typeof (value) === "string" || typeof (value) === "nunber”

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

