
+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

A MongoDB aggregation framework allows you to calculate aggregated values without having to use
map-reduce. While map-reduce is a powerful tool, it often proves to be slow when processing big
volumes of data. In this article, I would like to compare map-reduce with MongoDB and show the
significant benefits of using the latter.

MongoDB vs Map-Reduce

The main differences of Aggregation Framework from Map-Reduce are:

declarative syntax, no need to write code in JavaScript;

describing chains of operations to apply;

expressions evaluation;

higher performance because aggregation framework is implemented in C++ instead of JavaScript;

projections of returned data so a user can add computed fields, sub-objects, etc.

Framework concepts

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Aggregation Framework provides the similar logic as the “GROUP BY” SQL operator. There are 2 main
concepts in aggregation framework: pipelines and expressions. Pipelines are operators that can
process a stream of the documents. Expressions return the output documents after the calculations on
input documents. Some pipelines:

$match – uses query predicate like collection.find({});

$project – allows to change the shape of the result, include computed values, sub-objects, etc.;

$unwind – separates elements of an array and add it into an output document;

$sort – sorts documents;

$limit – specifies maximum number of documents to be returned;

$skip – skips a specified number of documents.

Using MongoDB in Node.JS: our hands-on experience

MongoDB has drivers for many programming languages and platforms, including Node.JS. You can
install Node.JS driver by typing npm install mongodb.

All MongoDB features are available in the driver. There was a task to aggregate huge data collection by
three fields to build some statistical report. The collection contained about 500k records with web pages
views statistics. Each document had the following format:

{
 _id : ObjectId(50890388e4b04b876d9cebf1),
 userId : someId,
 url : http://some.url,
 backendTime : 835,
 domProcessingTime : 14,
 pageRenderingTime : 419,
 totalLoadTime : 1273,
 ip : 0.0.0.0,
 browser : Firefox,
 version : 16,
 OS : Linux,
 pageSize : 907,
 images : 1,
 styleSheets : 4,

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

 screenResolution : 1920;1080,
 country : RU,
 time : NumberLong(1351156616195)
 }

It was necessary to group data by time, IP address and URL. The first version of this logic was
implemented using map-reduce:

var map = function() {
 var d = new Date(parseFloat(this.time));
 var currTimeSlice = getCurrTimeSlice(d, frequency);
 var key = {time: currTimeSlice, url: this.url, ip: this.ip};
 emit(key, {count: 1});
 };

var reduce = function(key, values) {
 var sum = 0;
 values.forEach(function(value) {
 sum += value.count;
 });
 return {time: key.time, url: key.url, ip: key.ip, count: sum};
 };

var scope = {
 frequency : frequency,
 getCurrTimeSlice: new Code(getCurrTimeSlice.toString()),
 getHour : new Code(getHour.toString()),
 getDay: new Code(getDay.toString()),
 getWeek : new Code(getWeek.toString()),
 getMonth : new Code(getMonth.toString())
 };

db.collection('beacons', function(err, collection) {
 collection.mapReduce(map, reduce, {out: {inline: 1}, query: filter, scope
: scope},
 function(err, items) {
 // logic
 });
 });

The processing of 500k records took about 1 minute. It was an annoying issue and we decided to
switch to the MongoDB 2.1. aggregation framework. The new version of aggregation logic is presented
below:

db.collection('beacons', function(err, collection) {
 collection.aggregate([
 {$match : filter},
 {$group : {
 '_id' : {'time' :'$time', 'url' : '$url', 'ip' : '$ip'},
 'count' : {$sum : 1}
 }}],
 function (err, items){
 // logic
 });
 });

In this code, we use 2 pipelines: $match and $group. The $match filter required records, and the
$group aggregates records by three fields: time, URL and IP. These fields are used as a key because
we explicitly specified ‘_id’ field and expression $sum calculates the number of records with the same
key. The output data has the following view:

[
 {
 '_id' : {'time' : 1111111111, 'ip' : '0.0.0.0', 'url' :
'http://some.url'},
 'count' : 38
 },
 {
 '_id' : {'time' : 1111111112, 'ip' : '0.0.0.0', 'url' :
'http://some.url'},
 'count' : 38
 },
 ...
]

Result

The use of an aggregation framework significantly improved the performance of the processing. Now
500k of records are processed within 3-4 seconds. The MongoDB aggregation framework is a powerful,
simple and lightweight tool that really allows you to improve the performance of aggregated values
calculations without using map-reduce.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

