<> magora

*, Uliframework

We'd like to share our experience in developing a small and easy-to-use api-server on the Yii-
Framework. We had a task to write a small backend for an android application and an api-server for it.
So, we came up with an idea to combine both the APl and Backend in one project. But how can we
make it smart and convenient? Our team by trial and error found an effective and fast way to do it and
we’re glad to spotlight this research.

APl on Yii Framework: step by step procedure

We will use a MySQL database and the Yii Framework 1.1.14, as of writing this article it is the latest
stable version (we're expecting version 2.0 to be more stable). Let’'s skip the details of how to create
and adjust an empty project, | think everybody who is interested in this article is aware how to do it. To
begin with, we create two models — country and category- with the help of migration.

$t hi s->createTabl e(* "country ', array/(
‘ | d! :>1 pka ,

In each table we add two entries. For example, in the country table we add two countries — Russia and
India. In the category table we add two categories — categoryl, category2 and assign different countries
to them. We set the task — to write two api-methods of the following type:

1. http://anysite.com/api/getCountryList/ - return country list;

2. http://anysite.com/api/getCategoryList/countryld/1 - return category list of the country. If the
country isn't indicated to return all categories.

Firstly, we write a Response class that will create the server response as JSON. We set three private
properties of the class:

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

<> magora

private $dat a; /'l Here we wil | save answer dat e;
private $code; [HTTP code - server's answer ;

Let's set constants for codes and messages:

const MG OK = "ok’ ;
const M5G NO DATA = ' no data';

We redefine "setters" and "getters":

public function __set($nane, $val ue) {

Then we declare the method that will set the code and messages of the server:

public function set Code($code, $nessage) {

Finally, we set the very method that sends responses:

public function send() {
swi t ch($t hi s- >code) {

Further, we have to create a controllerApi, where the list of api-methods will be created and the whole
logical process will take place. We set a private property — Response, where we will keep the object of
the created Response class.

private $response;
publ i c function init() {

We then write an actionCall method with a $method parameter. This method handles requests to the
api-server. Therefore, all the requests will go through it. If there is an api-method and all the parameters
are right, the actionCall will call the requested api-method, if not, it returns an error.

public function actionCal | ($net hod = nul 1) {

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

<> magora

array($par am >nane => Yii::app()->request->get Paran($par am >nane)) ;

> sDef aul t Val ueAvai | abl e()) {

In this method we use a so-called Reflection (a total sum of the classes designed to get information
about language objects directly when a PHP script is being executed). We used ReflectionMethod,
because we work with this class.

By means of a getParameters method we get the parameters of the requested api-method, then check
each parameter with a received GET data. In case the Get parameter name corresponds to the
parameter (if (Yii::app()->request->getParam($param->name))), the value of this parameter is set
from GET parameter.

If the Get parameter isn’t set for this parameter, we check whether this parameter has value by default.
If it has it (it means that this parameter isn’'t necessary to call this api-method), so we set this value
($param->getDefaultValue()). In case it doesnt have a default value (if (!$param-
>isDefaultValueAvailable())), we return errors about a wrong request of this api-method.

The next step is to adjust routing in such a way that requests Ilike that:
http://anysite.com/api/<method>/<param>/<value>/....../<param>/<value> will redirect to the method
actionCall. For this purpose, we should configure the UrIManager:

“url Manager’ => array(
“url Format’ => ‘path’,

Then we can start writing the api-method that we discussed in the beginning of the article:

private function get Count ryLi st () {
i f ($co

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

<> magora

ccountry id);

These are some examples of requests and responses:

1. Request:
http://anysite.com/api/getCountryList/

Response:
{"code": 200, "nessage": "ok","data": {"countries":[{"id":"1", "nane": " Russi a"},
“id":"2","name":"India"}]}}

2. Request:
http://anysite.com/api/getCategoryList/

Response:

{"code": 200, "nessage": "ok","data": {"categories":[{"id":"1","nanme": "cat egory:
"id":"2","name": "category2"}]}}

In case this api-method was declared like this:
private function getCategoryList($countryld),
the response would be:

{" code": 500, "nessage": "wong i nput data"}
because the obligatory attribute of api-method wasn’t sent.

3. Request:
http://anysite.com/api/getCategoryList/countryld/1

Response:

{"code": 200, "nessage": "ok","data": {"categories":[{"i1d":"1", "nanme": "cat egory:

4. Request: if non-existent method.

Response:

{"code": 404, "nmessage": "unknown net hod"}

Conclusion

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

<> magora

The result of our work is a very handy tool for implementation of an api-server. We used it in an Android
application, where users check all the necessary parameters, make an order and then pay through a
bank or use a mobile payment system.

We hope that our tutorial will be helpful for developers, who are looking for ways to combine a server
and an API for their applications.

<» Mmagora . +44 20 7183 5820

N info@magora.co.uk
sales@magora.co.uk

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk

