
+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Many years ago our company was working on a big project - a Real Estate Portal. It was going to be a
high-load web app, and we needed to find the best high-performance framework for it. At the time I
didn’t have much prior experience, I had mostly worked with CMS before. But a CMS was a bad fit for
this particular project, as we were planning to use many non-standard components. Moreover, I never
liked working with CMS, because it’s often hard to manipulate their source code. I decided to conduct
an Internet research and read many comparative posts and reviews about the cutting edge frameworks
of that time. As a result, I chose Yii. The decisive factors were perfect documentation, a load of
dedicated forum discussions, popularity and, therefore - low entry barrier.

I remember, as if it was yesterday, that I didn’t have many difficulties and I could “google” a solution for
almost any problem. Of course, my code wasn’t perfect and I implemented many things roughly and
improperly, but it stemmed from the fact that I lacked experience with frameworks in general. I simply
had no knowledge of more elegant and proper implementation.

Now, many years later, I decided to try out a framework that is popular today - Laravel. I can tell you
right away: it was uncomfortable to work with, but when it comes to dealing with something new - it’s a
common issue. Note, that the documentation is laconic, but I really felt like it's missing detailed
descriptions of little things. Because of that, I had to go through the source code pretty often. Moreover,
Laravel, unlike Yii, is rich in abstracts, so executed methods weren't easy to find. All in all, it seems like
Laravel is similar to Yii in terms of usage, but implementation methods differ and it takes time to get
comfortable. Something is more convenient, something - on the contrary, provokes wrath and fury.
Now, let's get to our comparison.

Description

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
http://en.wikipedia.org/wiki/Content_management_system


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

The first impression is strongly influenced by the description on the official website. Let’s take a look at
what these frameworks have to offer (at the moment):

Yii 2

Yii is a high-performance PHP framework that is perfect for swift development of modern web
applications. Its possibilities allow implementing large scale projects like forums, portals, CMS, RESTful
web services, etc.

As most frameworks, Yii is based on MVC (Model–view–controller) pattern.

The core of Yii philosophy is simple and elegant code.

Yii is a full-stack framework that provides multiple turnkey solutions: a query builder, ActiveRecord
for relative and NoSQL databases, RESTful API, multi-level caching support and many other
things.

Yii is very scalable. You can modify or redefine any piece of source code. You can also create
your own extensions.

The main purpose of Yii is to provide high-performance.

Laravel

Laravel is a framework designed for building web applications with exquisite and sophisticated syntax. It
simplifies dealing with sore spots, such as authentication, routing, sessions and caching. Laravel was
conceived to embody the best of all PHP and other frameworks (like Ruby on Rails, ASP.NET MVC and
Sinatra). Laravel is accessible, yet powerful. It comes with many excellent tools for building large and
reliable apps:

Superb IoC (Inversion of control).

Convenient migration system.

Integrated system of module testing.

Sounds great, right? But if you draw a side-by-side comarison, you’ll see that each of them has certain
strengths and weaknesses. To be honest, comparing them is like comparing NetBeans IDE and

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
http://www.yiiframework.com/doc-2.0/guide-intro-yii.html
http://laravel.com/
http://www.sinatrarb.com/
http://en.wikipedia.org/wiki/Inversion_of_control
https://netbeans.org/downloads/#


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

PhpStorm IDE: both have broad possibilities implemented in a different way. Until you try - you can’t
really understand which one works for you the best.

Yii vs Laravel

As known, in order to compare two tools you need to compare the way most common development
capabilities are implemented in each of them. I really tried to take all crucial aspects into consideration:

Parameter Yii Laravel

Requirements PHP 5.4 or higher
PHP 5.4 or higher
MCrypt PHP extension
PHP JSON extension

MVC
(Model–view–controller)

Yes Yes

Extensions Yes Yes

ORM
(Object-relational
mapping)

Data Access Objects (DAO)
Active Record Pattern
(ActiveRecord)
Doctrine 2 via plugins

DAO
ActiveRecord Pattern
(Eloquent ORM)
Doctrine 2 via plugins

Testing Out of the box:

PHPUnit
Codeception

Out of the box PHPUnit
Symfony testing
components (HttpKernel,
DomCrawler and
BrowserKit)

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
https://www.jetbrains.com/phpstorm/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Object-relational_mapping


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Debugging
Comprehensive debugging
console
Multi-level logging
Database requests logging

Logging
Debugging console with
a stack of callbacks

Imho, pretty limited, but the
problem can be solved with the
laravel-debugbar extension.

Migration Migration tool (Migration class)
Migration (Migration
class)
Data filling tool (Seeder
class)

Security
Feature-rich Access Control
Filter (ACF)
Role-Based Access Control
(RBAC) based on NIST RBAC
model
OpenID, OAuth or OAuth2,
etc. authorization extensions

Everything off-the-shelf + plugins.
Component access control is
closely integrated with RBAC.

RBAC
ACL plugins
Access Control Filters
(which are really
functions)

Pattern generators,
working with patterns PHP-based

Official Twig and Smarty
packages
JS, CSS, etc. connectivity
assets
Plugins

PHP-based
Blade
JS, CSS, etc.
connectivity assets
Plugins
Default caching of all
patterns

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Caching
APC
Database
File
Memcached
Redis
WinCache
XCache
Zend Data Cache

APC
Database
File
Memcached (in version
5)
Redis (in version 5)

REST API
Off-the-shelf JSON, JSONP
and XML support
REST requests routing
HATEOAS support
Request caching
Speed limitations, etc.

REST requests routing
settings
JSON, JSONP support,
etc.

App localization Yes Yes

Form validation Yes Yes

Scaffolding
Gii (Yii Code Generator) -
model, CRUD, controller,
form, module, extension
generation interface
Console

Using a console via
Artisan
Extensions

Some parts I’d like to talk more about:

Extensions

Well, both frameworks are well equipped with plenty of extensions for almost anything. It’s important,
because all disadvantages can be mediated with the help of one or two extensions. And they fit like a
glove.

Migrations

Both frameworks offer convenient migration tools, but Laravel also enables you to add seeders for
simple and smooth initial data transfer. It comes in handy for both testing (test data) and filling static
directories. With Yii you only have Migrations to do that.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
https://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Scaffold_%28programming%29
http://en.wikipedia.org/wiki/Database_seeding


+44 20 7183 5820

info@magora.co.uk
sales@magora.co.uk

Security

I was, actually, surprised that Laravel doesn’t have enough off-the-shelf access control tools.
Nevertheless, there are many extension packages for that. I have to acknowledge that both frameworks
offer instuments for working with passwords, authentication, protection from SQL injections, Cross Site
Scripting (XSS), Cross Site Request Forgery (CSRF), etc.

Form validation

Both frameworks, obviously, include validation, but it’s implemented differently. In Yii it’s linked to the
class of a form or a model. It allows you to set up rules directly in it and check it according to those
rules after receiving data and filling in ActiveRecord. Let’s say, there’s another form that changes a
portion of model data. In this case, you’ll have to either create a specific class for it, or use validation
scripts. It’s not a problem, unless you need to validate some values directly within the controller and
create your custom verification method, and not to use a ready-made solution. That’s something
Laravel can really be proud of. Its validator exists as a separate assisting class. You can validate data
any place, any time. Plus, for convenience and unification purposes you can extend Eloquent class with
your own methods.

Results

From what I’ve seen on multiple forums, people, who started working with Laravel and tried to master
Yii later claimed that it was uncomfortable and odd to deal with. And vice versa. At the end of the day,
there’s no clear winner here. It’s up to you to decide which one suits you best.

tel:+442071835820
mailto:info@magora.co.uk
mailto:sales@magora.co.uk
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_request_forgery

